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Abstract
Grasses within the Sporobolus genus have been classified as problematic weeds of pastures 
in many countries. In Florida, giant smutgrass is the most common and troublesome weedy 
Sporobolus grass. The use of unmanned aerial vehicles (UAVs) for mapping, combined 
with site-specific weed control has the potential to optimize giant smutgrass management 
and decrease the use of herbicides. In this research, RGB ortho-mosaics captured from a 
simple UAV were examined to detect and map giant smutgrass in bahiagrass pastures in 
Florida. Two sampling dates (May and August) and four flight altitudes (50, 75, 100 and 
120  m) were investigated for optimal classification accuracy. Spectral, texture and com-
bined (spectral and texture) analyses served as the basis for supervised (random forest) and 
unsupervised (k means) classifications. Giant smutgrass cover was successfully mapped 
and best evaluated by integrating the combined analysis with supervised algorithm, reach-
ing a correlation of 0.91 with the ground truth cover. Flight altitude had a negative rela-
tionship with giant smutgrass detection; however, satisfactory results were also obtained 
from 120 m with an average correlation of 0.76 when using combined supervised classi-
fication. Additionally, both sampling dates were found adequate for giant smutgrass map-
ping. These findings demonstrate that low-cost UAV platforms can successfully be used to 
generate accurate giant smutgrass infestations maps, allowing for site-specific management 
in bahiagrass pastures. Results from this work also broaden the general knowledge on the 
impacts that different settings and parameters (e.g. time of the year, altitude and image-
analyses methods) can have on aerial image classification.
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Introduction

Weedy Sporobolus grasses are invasive perennial warm-season bunch grasses believed to 
be native to tropical Asia (Wunderlin & Hansen, 2003). They have been widely recog-
nized as problematic weeds in pasture systems throughout the world (Dias-Filho, 2015; 
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Palmer, 2012), including the southeastern United States (Ferrell et al., 2006; Mislevy et al., 
2002; Rana et  al., 2015). In Florida, the spread of giant smutgrass (Sporobolus indicus 
var. pyramidalis) in bahiagrass pastures (Paspalum notatum) is of growing concern. Giant 
smutgrass is a prolific seed producer (Currey et al., 1973) that can quickly spread to new 
areas, resulting in significant reductions in forage production (Ferrell et al., 2006). Addi-
tionally, selective over-the-top herbicides are limited and expensive, making effective and 
economic viable long-term management very difficult to achieve (Sellers et al., 2018).

An emerging approach to reduce the overall use and cost of herbicides is site-specific 
weed management (SSWM). Traditionally, herbicides are applied uniformly across fields; 
nonetheless, weeds tend to aggregate in patches rather than being uniformly distributed 
(Blank et al., 2019; Rozenberg et al., 2021). Accordingly, SSWM utilizes the weeds clus-
tered spatial pattern to perform customized site-specific spraying, accounting for both weed 
location and infestation level, thereby decreasing the excessive use of chemicals, expenses 
(Nordmeyer, 2006), chances of crop injury, as well as off-target movement potential.

One of the critical components and challenges for SSWM implementation is weed 
monitoring and the ability to generate quick, accurate and precise weed maps. While tra-
ditional in-person field scouting is labor-intensive, costly and likely not feasible for large-
scale settings, remote sensing via unmanned aerial vehicles (UAVs) offers an exceptional 
solution (Huang et al., 2018). The use of UAV platforms for photogrammetry has several 
advantages including the ability to fly at low altitudes, allowing for greater spatial resolu-
tion imagery and for the possibility to identify small individual plants and/or weed patches 
(Xiang & Tian, 2011). However, there is an inherent trade-off between area coverage, flight 
altitude and UAV flight time. An optimized flight altitude will allow for large area cover-
age while obtaining satisfactory resolution allowing weed detection (Borra-Serrano et al., 
2015).

There is a possible complication in the detection and mapping of weeds due to their 
shared visual characteristics with crops. When possible, e.g., in crop rows, one can incor-
porate spatial information of a plant location in the classification process to discriminate 
crop from weeds (Louargant et al., 2018). However, this type of analysis cannot be carried 
out on pastures because they have homogeneous coverage. Alternatively, spectral-based 
classification derived from phenological differences among weeds and crops has been sug-
gested and served as the basis for weed mapping via remote sensing (Castillejo-González 
et al., 2014; Lamb & Brown, 2001; Rasmussen et al., 2018; Rozenberg et al., 2021). Uti-
lizing phenological differences of weed and crop to distinguish between the two should 
consider the time within the season for image acquisition to maximize the spectral contrast 
(López-Granados et  al., 2010). Additionally, attributes such as height (Zisi et  al., 2018), 
texture (Yuba et al., 2021) and shape (Bakhshipour & Jafari, 2018) should also be consid-
ered as they may contribute to classification accuracy.

Numerous classification algorithms have been utilized for weed mapping, each with its 
own advantages and drawbacks (Mohidem et al., 2021). An automated classification proce-
dure is likely to avoid errors that may derive from human input introduced into the process 
(de Castro et  al., 2018) and facilitate the implementation of weed mapping using UAVs 
by inexperienced end-users (Gašparović et  al., 2020). However, a fully automated weed 
mapping process remains a challenge (Mohidem et al., 2021), even in well-defined spectral 
differences (Rasmussen et  al., 2018). While the latest state-of-the-art classification algo-
rithms such as deep neural networks hold promising results, they require computational 
power and large training datasets (Bakhshipour & Jafari, 2018; Mohidem et  al., 2021). 
Alternatively, classification of weeds has been accomplished by relatively simple methods 
(e.g., Gašparović et al., 2020; Rozenberg et al., 2021). Integrating imagery produced from 



Precision Agriculture 

1 3

low-cost UAV with open source relatively simple procedures may allow for economic and 
rapid weed map generation for site-specific management.

In order to optimize the use of UAVs for weed mapping it is important to determine the 
ideal parameters for imagery acquisition as well as the effectiveness of the image analysis 
algorithms and weed mapping approach. Therefore, the objectives of this study were to 
determine the effects of flight altitude and time of imagery acquisition during the season 
on the effectiveness of giant smutgrass mapping in bahiagrass pastures. Additional objec-
tive was to compare methods to classify and detect weeds, by using both supervised and 
unsupervised classification algorithms. It is hypothesized that the increases in flight alti-
tude are likely to negatively affect giant smutgrass detection accuracy due to loss of spatial 
and spectral resolution. Furthermore, classification accuracy is expected to be higher in the 
summer due to the more evident phenological differences and consequently spectral con-
trast between giant smutgrass and bahiagrass.

Material and methods

Experimental site

This work was conducted at the University of Florida Institute of Food and Agricultural 
Sciences (UF/IFAS) Range Cattle Research and Education Center, near Ona, FL, in 2017. 
Two research sites (27° 22.8ʹ N 81° 56.64ʹ W and 27° 23.52ʹ N 81° 57ʹ W) of 105 × 105 m 
(~ 1.1 ha) were delimitated in two established bahiagrass pastures naturally infested with 
giant smutgrass (Fig.  1). The two pastures were being continuously stocked during the 
study and were selected based on their different levels of giant smutgrass infestation. Giant 
smutgrass infestation was visually estimated to be 20–30% and 60–70% of ground cover 
for the Low Field (LF) and High Field (HF), respectively. Both fields were sampled in early 
May and early August in 2017. The sampling dates were chosen to represent the dry (May) 
and wet (August) seasons (Table 1).

Acquisition of aerial photographs and field sampling

The DJI Phantom 4 (SZ DJI Technology Co., Ltd., Shenzen, Guangdong, China), a popular 
recreational UAV platform with vertical take-off and landing (VTOL), was employed to 
acquire digital images within the two study sites. This UAV had an integrated RGB cam-
era, acquires 1-inch 20-megapixels images in true color (Red, R; Green, G; and Blue, B, 
bands) and has an optimized f/2.8 wide-angle lens. The camera’s sensor is a 25 mm com-
plementary metal-oxide semiconductor (CMOS) with 20 M effective pixels.

The UAV was employed at the LF and HF locations, at four different flights altitudes 
(50, 75, 100 and 120  m). Flights were conducted at a maximum speed of 5  m/s with a 
frontal and side image overlap of 75%. Simultaneously to the UAV flights, a systematic 
and on-ground sampling procedure was carried out. In each field, 56 sampling quadrats 
of 1.5 × 1.5 m were placed in a grid-like shape, placing a quadrat every 15 m throughout 
the study area surface. Each quadrat was georeferenced with a Trimble GeoExplorer 6000 
series GeoXH (Trimble Inc, Sunnyvale, California, USA), and giant smutgrass percent 
cover was visually estimated on-ground on the same days that the images were acquired. 
All ground cover estimates were performed by a single observer to ensure uniformity and 
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Fig. 1  Ortho-mosaics acquired at an altitude of 50 m for the entire research area of LF pasture in May and 
August (A and C, respectively) along with area zoom-in (B and D, respectively) and for the HF pasture in 
May and August (E and G, respectively) with corresponding zoom-in example (F and H, respectively)
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to avoid subjective variability. In addition, six artificial terrestrial targets (ATTs) were used 
to perform the imagery ortho-rectification and mosaicking process.

Imagery was collected in digital negative (DNG) format. Upon flight completion, all 
imagery was converted to JPEG using Photoshop CC 2018 v. 19.1.4 (Adobe Inc., San Jose, 
CA, USA). Converted images from each flight were mosaicked into a single image using 
the online browser-based service Maps Made Easy (Drones Made Easy, San Diego, CA, 
USA). Although other platforms are available for mosaicking imagery, such as ArcGIS and 
Drone Deploy, Maps Made Easy was the most economical for this study.

Image classification and validation

The image classification procedure was constructed in two steps: analysis and classifica-
tion. First, the RGB ortho-mosaic was analyzed to obtain meaningful spectral and textural 
layers. An additional combined analysis was comprised of both initial analyses. Second, 
the layers produced were used to detect giant smutgrass employing two classification algo-
rithms (Fig. 2).

Due to the giant Smutgrass phenology i.e., brown seedheads, which may contrast 
with the green bahiagrass, spectral-based classification was initially examined using a 
vegetation index. Considering that the RGB camera captures images within the visi-
ble-spectrum, vegetation indices based on the relation between the red, green and blue 

Table 1  Average temperature and 
monthly precipitation obtained 
in sampling months from the 
UF/IFAS weather station at 
the Range Cattle Research and 
Education Center

Month Precipitation (mm) Tem-
perature 
(C°)

May 64 25
August 272 27

Fig. 2  Simplified scheme of the two-step classification procedure. First, the three analyses were performed 
on the ortho-mosaics. Second, the produced layers served as the basis for the two-classification algorithm 
utilized
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channels, are commonly used to emphasize plant material. Based on preliminary exami-
nations the color index of vegetation extraction (CIVE), was adopted (Kataoka et  al., 
2003; Eq. 1).

where R =
r

r+g+b
 , G =

g

r+g+b
  and B =

b

r+g+b
 . The parameters r, g and b are normalized val-

ues between 0 and 1 expressed as: r = red

redmax
 , g =

green

greenmax
 and b =

blue

bluemax
  where red green 

and blue are the original pixel values and redmax , greenmax and bluemax all equal 255 and are 
the maximum value of their respected spectral channel.

Texture analysis may unveil patterns that are not captured within the spectral realm 
and thereby increase classification accuracy. Second-order textures, used in this research, 
measure the probability of each pair of pixels co-occurring within a specified distance and 
direction (Haralick et al., 1973). Texture analysis was carried out using the gray-level co-
occurrence Matrix (GLCM) package in R (Zvoleff, 2020). The ‘glcm’ function generates 
eight second-order texture-based rasters: mean, variance, contrast, correlation, homogene-
ity, dissimilarity, entropy and second moment. Further explanation and texture equations 
can be found in Haralick et al. (1973). Each of these eight indices is calculated per pixel 
located at the center of a moving window size that contains a number of rows and columns 
of pixels specified by the user. Texture analysis may be influenced by the selected win-
dow size (Feng et  al., 2015). Following a careful examination and preliminary analyses, 
two indices, the homogeneity and entropy layers produced with a 5 × 5 window size, were 
chosen to represent the texture analysis. Finally, the homogeneity and entropy layers were 
coupled with the vegetation index layer to create a raster comprised of both texture and 
spectral characteristics.

All three analyses, i.e., spectral, texture and the combined analyses, were employed to 
classify each ortho-mosaic using both supervised and unsupervised classification. For the 
first, the random forest algorithm was employed. Random forest is a cutting-edge machine 
learning algorithm applied to supervised classification that has recently been used suc-
cessfully to classify weeds in various conditions (e.g., de Castro et al., 2018; Gao et al., 
2018; Yuba et al., 2021). Supervised classification requires user input of training samples. 
Overall, twelve training samples, depicted as polygons, were constructed to represent the 
two classes – “giant smutgrass” and “other”, six polygons for each class. The polygons 
varied in size but were identical between the two groups i.e. the same polygon sizes and 
shapes were used in both classes. The highest resolution ortho-mosaic (50 m flight altitude) 
was utilized to delimit these polygons. However, the training process of each classifica-
tion was done to each ortho-mosaic separately. In contrast, user input is not necessary for 
the unsupervised classification, and k-means algorithm was employed by simply setting 
the number of classes to two. The random forest and k-means algorithms were employed 
using the ‘superClass’ and ‘unsuperClass’ functions, respectively, in the RSToolbox pack-
age (Leutner et al., 2019). Finally, a majority filter was applied to reduce “salt-and-pepper” 
effect, where pixel values were altered according to their neighbors as utilized in previous 
research (Lu & Weng, 2007; Rozenberg et al., 2021).

Based on the classification maps, giant smutgrass cover was calculated within the 56 
ground truth quadrats as the percentage of pixels classified as giant smutgrass out of the 
total pixels in each quadrat. Giant smutgrass calculated from the classification maps was 
tested for correlation with the ground truth visual cover in each quadrat estimated in the 
field. All the analyses were performed using R studio 1.1.456 (R Development Core Team, 
Vienna, Austria).

(1)CIVE = (0.441 ∗ R) − (0.811 ∗ G) + (0.385 ∗ B)
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Results

In total, sixteen ortho-mosaics were produced. The two pastures were surveyed at two 
sampling dates from four different flight altitudes. For each ortho-mosaic, six weed 
maps were generated. Spectral-, texture- and combined (spectral and texture) -based 
analyses were examined by employing supervised and unsupervised classification.

By integrating the correlations to the ground truth visual cover from all flight alti-
tudes, it was found that the spectral analysis was insufficient using both supervised and 
unsupervised classifications in the HF pasture (average R correlation = 0.46), but the 
texture and combined analyses performed well using both classification algorithms 
(Fig. 3). The texture analysis followed by supervised classification obtained high corre-
lations in the LF pasture in May (average R correlation = 0.77), whereas spectral analy-
sis outperformed the texture analysis in August with average R correlation of 0.76 and 
0.55, respectively; however, the texture analysis correlations were less consistent. The 
combined analysis performed well for both sampling dates using the supervised clas-
sification reaching a correlation of 0.91 with low variability, indicating satisfactory and 
reliable results (Fig. 3).

In the next step, the effect of flight altitude on classification performance was exam-
ined. For that, correlations to the ground truth visual cover of the two sampling months, 
for both LF and HF, were combined. Supervised classification outperformed unsuper-
vised classification at all flight altitudes (Fig.  4). For the combined supervised clas-
sification, the highest correlation of giant smutgrass detection with the ground truth 
estimations was produced from the lowest flight altitudes, i.e., 50 m with average R cor-
relation of 0.85 (Fig. 4). Correlations acquired from altitudes of 75 m and 100 m were 
similar though, for the supervised classification, greater variability was found at 100 m. 
The lowest correlations were at a flight altitude of 120 m (average R correlation = 0.76). 
The effect of flight altitude on classification accuracy was affected by the sampling date. 
While, in May, the correlation was similar across all four flight altitudes, in August, the 
correlation decreased as altitude increased (Fig. 5).

Fig. 3  Correlations between giant smutgrass cover field estimations (ground truth) and cover calculated 
from classifications maps considering the two research fields at both sampling dates
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Finally, weed maps with the highest correlation were used to calculate total smutgrass cov-
erage in each field and date. For three out of the four cases (HF in May and LF in both dates), 
combined analysis with supervised classification produced the highest correlations. For HF in 
August, the combined analysis followed by the unsupervised classification performed slightly 
better (R = 0.85) than the supervised classification (R = 0.82). For the LF pasture, giant smut-
grass coverage was 16.8% in May and 14.6% in August. In the HF pasture, giant smutgrass 
coverage was 44.1% and 52.9% for May and August, respectively (Fig. 6).

Fig. 4  Correlations  of giant smutgrass cover field estimations and cover calculated from classifications 
maps based on the combined analysis

Fig. 5  Correlations of giant smutgrass cover field estimations and cover calculated from classifications 
maps based on the combined analysis considering altitude and sampling date
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Discussion

Examining various combinations of image analysis and classification methods resulted 
in successful mapping of giant smutgrass. Despite the expected phenological differences 
between giant smutgrass and bahiagrass, classification based solely on spectral differences 
was not sufficient. As an alternative, textural and combined texture-spectral based clas-
sifications were used to improve weed detection. Similar techniques were employed to 
map different weed species in previous studies when spectral differences were not suffi-
cient either by using RGB camera (Yuba et al., 2021) or advanced cameras, i.e. multispec-
tral images (Tamouridou et al., 2017; Zisi et al., 2018). In this research, texture analysis 
alone yielded satisfactory results for three out of four cases whereas, when combined with 
the spectral input, it improved the correlation with the ground truth data for each of the 
analyses.

Image classification

Giant smutgrass was successfully classified in the two research fields and at two sam-
pling dates employing the combined analysis with supervised classification. However, the 

Fig. 6  Classification maps with the highest correlation were produced for HF and LF pastures in May (A 
and B, respectively) and August (C and D, respectively). Brown represents giant smutgrass, and green rep-
resents other surface cover e.g., soil or bahiagrass
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contribution of spectral and texture information to the classification success varied. In the 
HF pasture, the texture analysis consistently acquired high correlation. In the LF pasture, 
the spectral and texture analyses resulted in contrasting success between the two sampling 
dates. Several factors may contribute to the contrasting analyses projected on the classifica-
tion accuracies in the different cases: bahiagrass vigor, the development of giant smutgrass 
seedheads and the grazing intensity. The HF pasture was not only characterized by a high 
infestation rate of giant smutgrass but also by degraded bahiagrass conditions and more 
bare ground areas lacking any vegetative cover. Several factors may have contributed to the 
degraded bahiagrass conditions and bare ground areas in the HF field, including the lower 
nutritive value of giant smutgrass, which results in bahiagrass being overgrazed (Wilder 
et  al., 2011), feral swine rooting, as well as lack of proper adoption of recommended 
agronomic practices such as liming and fertilizer applications. Consequently, brown soil 
patches were noticeable and shared a similar spectral signature to the giant smutgrass. 
The process was further complicated when, due to the absence of desirable forage avail-
ability, the animals may graze the giant smutgrass plants, resulting in fewer seedheads and 
new tissue growth, i.e., green material that shares spectral attributes with the bahiagrass.

Overall, the supervised classification yielded good and reliable results across all cases in 
this research. The unsupervised classification yielded satisfactory and comparable results 
to the supervised classification for the HF field, whereas the supervised classification out-
performed the unsupervised classification in the LF area. There are known limitations to 
both supervised and unsupervised methods for classifying remotely sensed images. In 
general, supervised classification algorithms tend to be more computationally intensive, 
require a considerable amount of preparation time, and are hard to reproduce, whereas 
unsupervised algorithms tend to have lower accuracy because a priori knowledge about the 
study area is not included in the process.

Time of imagery acquisition during the season

Similar setting found in HL (i.e. bahiagrass vigor, vegetative cover) was found for the LF 
pasture area in May. Therefore, spectral-based classification performed poorly in those 
cases. However, for the LF pasture in August, when the season progressed and rain began 
to support the pasture, the improved condition of the bahiagrass resulted in better cover-
age of the soil and green non-stressed bahiagrass along with the growth of brownish giant 
smutgrass seedheads allowed for fine spectral discrimination. In contrast, actively growing 
bahiagrass patches exhibited similar textural characteristics to the giant smutgrass result-
ing in relatively low accuracy scores of the corresponding analysis at this time. Finally, 
satisfactory accuracy scores were acquired at the two sampling dates when the combined 
analysis was used; thus, both May and August were found adequate for combined analy-
sis-based giant smutgrass mapping. This is an important finding for two reasons. First, a 
known problem with image classifications methods is that they are context-specific (Mohi-
dem et  al., 2021). Nonetheless, the combined analysis was robust for the two fields and 
two sampling dates. Secondly, accurately mapping giant smutgrass at different times of the 
year gives ranchers more flexibility to plan their giant smutgrass management program. For 
example, May mappings could be readily used if the goal is to control giant smutgrass with 
the selective but expensive herbicide hexazinone since this herbicide has been shown to 
be more effective in July (Dias, 2019). Conversely, August mappings could be used if the 
goal is to manage giant smutgrass with cheaper but non-selective herbicide options such 
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as glyphosate, which tends to be more effective when applied in September (Davy et al., 
2012).

Flight altitude

Low flight altitudes allow higher spatial and spectral resolution, whereas high altitudes 
allow UAV to cover a larger area and decrease image processing time (Borra-Serrano et al., 
2015). Previous studies reported that reduced spatial resolution of the ortho-mosaic had lit-
tle to no adverse effect on classification accuracy (Rasmussen et al., 2018; Rozenberg et al., 
2021; Tamouridou et  al., 2017). Pérez-Ortiz et  al. (2015), reported similar classification 
results from 30 to 60 m yet the accuracy decreased when flight altitude increased to 100 m. 
While mapping Pennisetum alopecuoides in grazed pastures, Yuba et al. (2021) examined 
four altitudes comparable to some extent to the altitudes examined in this research and 
achieved high accuracies across all altitudes. Yet, the highest accuracy corresponded to 
the highest spatial resolution, i.e., the lowest flight altitude of 28 m. Overall, these findings 
are consistent with the results found in this research although the lowest altitude here was 
50  m. On average, the highest correlations were obtained upon comparing ground truth 
estimations with classification maps acquired at the lowest altitude. However, high correla-
tions were also found for increased flight altitudes, including the highest flight of 120 m, 
especially for images acquired in May. Therefore, if the mapping of a large area is needed, 
it is possible to increase the UAV flight altitude and still acquire satisfactory giant smut-
grass weed maps.

Implications for weed management

The two research locations displayed different infestation levels. Considering herbicide 
costs and possible negative effects on bahiagrass, Ferrell et al. (2006) recommended broad-
cast applications of hexazinone at 1.12 kg ai  ha−1 only after giant smutgrass cover exceeds 
35%. One direct and readily available benefit of the generation of giant smutgrass infes-
tation maps, by adopting methods proposed in this work, would be the identification of 
giant smutgrass infested fields that meet these requirements. For example, the HF pasture 
(in both sampling dates) is qualified for positive return of investment broadcast applica-
tions of hexazinone. Another benefit of generating giant smutgrass infestation maps is the 
possibility to manage pastures before the economic thresholds of giant smutgrass infesta-
tion (35% groundcover) are reached by employing SSWM. Site-specific giant smutgrass 
management can therefore decrease the detrimental impacts of giant smutgrass interference 
even in low-infested fields, optimizing forage production and quality (Ghanizadeh & Har-
rington, 2019), while at the same time slowing giant smutgrass expansion rate within the 
same field, as well as to non-infested fields. Likewise, SSWM may allow the use of other 
non-selective herbicides such as glyphosate to manage giant smutgrass in bahiagrass pas-
tures since only the giant smutgrass plants would be sprayed. Furthermore, it is important 
to note that giant smutgrass is a perennial species which were generally reported to be sta-
ble in their location across years (Blank et al., 2019; Colbach et al., 2000). Therefore, the 
mapping of one year may be used for weed management in the following year (Lati et al., 
2022). However, this still needs further investigations and might vary based on the type of 
bahiagrass grazing management program.
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In recent years, a large and growing body of literature has examined the application 
of UAVs for numerous environmental observations (Manfreda et al., 2018). Ease-of-use, 
flexibility and high spatial resolution images are merely a subset of the UAVs qualities 
to make them suitable for precision agriculture (Hunt & Daughtry, 2018) and particularly 
for precise weed management (Huang et  al., 2018; Mohidem et  al., 2021). UAVs have 
been reported to facilitate various monitoring aspects in pastures, e.g., biomass (Batistoti 
et al., 2019) and quality (Barnetson et al., 2020). Therefore, a single flight campaign may 
potentially provide diverse information to facilitate knowledge-based decisions in pasture 
management.

Conclusions

In this study, classification based exclusively on spectral or textural analyses was not suf-
ficient. However, integrating the two methods improved classification accuracy. Although 
flight altitude negatively impacted giant smutgrass detection, satisfactory results allowing 
weed detection, were also obtained at the highest flight altitude (120 m). In addition, dis-
crimination of smutgrass can be accomplished in both May and August, which means that 
applying SSWM to both dates is possible. In conclusion, giant smutgrass can be accurately 
mapped based on ortho-mosaics produced from RGB images captured using a low-cost 
UAV.
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