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A B S T R A C T   

Understanding how weeds spread in fields has been a central theme in the agricultural literature for the past 
three decades, including topics such as weed management and weed community assembly. This understanding is 
pivotal for optimizing herbicide use. Here, we present the results of a literature review focusing on the spatial 
and temporal distribution of weeds within fields over the last three decades. Eighty-one articles that met the 
inclusion criteria were included in the final analysis. These papers studied the distribution of 141 species. We 
found that 86% of the species studied had patchy distribution. Nevertheless, almost half of the studies focused on 
only one field, and 63% covered one to two years, which is insufficient to study the dynamics of weed distri-
bution over time. In addition, 97% of the studies were on crop fields, while orchards and vineyards were only 
rarely studied. This review emphasizes the need for more long-term studies to better understand the temporal 
dynamics of weed patches during and between growing seasons, and examine the factors that might affect them.   

1. Introduction 

Weeds cause the highest potential yield loss (34%), followed by pests 
and pathogens (18% and 16%, respectively) (Oerke, 2006). Global 
economic losses resulting from weeds have been estimated at more than 
100 billion USD per annum (Appleby et al., 2000), despite worldwide 
herbicide sales of 25 billion USD per year (Swanton et al., 2015). Her-
bicides account for 47.5% of the total pesticides used (De et al., 2014). 
Nevertheless, weeds problems are increasing due to the emergence of 
herbicide resistance (Heap, 2021). In addition, herbicides can cause 
adverse effects on biodiversity (Freemark and Boutin, 1995), human 
health (Jepson et al., 2014; Wilson and Tisdell, 2001), and underground 
water (Pretty et al., 2000). However, herbicides are still crucial to 
maintaining high yields; Kudsk and Streibig (2003) and Hicks et al. 
(2018) noted that research is needed to optimize their use. 

A site-specific weed management approach (SSWM) was proposed to 
address these issues (Esposito et al., 2021). Herbicides are typically 
sprayed uniformly over a field, regardless of weed density and spatial 
distribution, which results in over-spraying in weed-free areas. The basis 
for this approach lies in the growing understanding that the distribution 
of weeds in crop fields is heterogeneous. To implement SSWM farmers 

need accurate maps of weed-infested areas in their fields (Ribeiro et al., 
2005). Generating weed maps can be accomplished by scouting the field, 
using remote sensing e.g., satellites, airplanes, and drones, or using 
proximal sensing, i.e., sensors and cameras mounted on tractors, towers, 
and the like (Herrmann and Berger, 2021). Implementing SSWM 
approach can effectively reduce herbicide use by 40%–60% (Jensen 
et al., 2012), thereby reducing the environmental impact and farm costs. 
Despite extensive research on SSWM over the past three decades, the 
adoption of precision farming practices such as SSWM has been slow 
(Fernández-Quintanilla et al., 2018; Lamb et al., 2008; Lati et al., 2021). 
As agricultural systems exhibit spatial and temporal heterogeneity and 
various weed species vary in dispersal, phenology, and life form, it re-
mains uncertain whether the SSWM approach would be applicable and 
effective if developed based on particular assumptions, such as 
geographical locations, cropping systems, or timing during the growing 
season. A better understanding of the spatiotemporal dynamics of weed 
distribution should address these issues and thus facilitate the adoption 
of the SSWM approach. 
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1.1. Spatial patterns of weeds 

The study of species distribution in an agricultural system is partic-
ularly challenging due to the agro-ecosystem’s heterogeneous and 
complex nature (Karp et al., 2018; Krasnov et al., 2021). A wide range of 
variability exists at the regional scale due to numerous factors, including 
climate; management activities in neighboring fields; agricultural 
landscapes (e.g., crop rotation, uprooted plots); and soil composition 
(Ben-Hamo et al., 2020; Cohen et al., 2017; Firester et al., 2018; Gafni 
et al., 2023; Krasnov et al., 2019; Sciarretta and Trematerra, 2014; Tsror 
et al., 2020). Variations at the local scale affecting pest distribution 
include growers’ experience, cultural practices, soil characteristics (e.g., 
depth, moisture), microclimates and topography (Bagavathiannan et al., 
2019; Blank et al., 2016, 2022; Krasnov et al., 2019). The conditions 
exerted by different management practices of different types of crops 
have been shown to shape weed communities according to the species’ 
functional traits (e.g., seed weight, plant height) and phenological traits 
(Fried et al., 2008; Gunton et al., 2011; Hallgren et al., 1999; Smith 
et al., 2008). 

Many studies have shown that different weed species in different 
crop systems tend to spatially cluster (Colbach et al., 2000; Heijting 
et al., 2007a; Rozenberg et al., 2021; San Martín et al., 2015). Dispersal 
processes are primarily responsible for the spatial pattern of seeds in the 
soil, in addition to local management practices e.g., cropping history, 
tillage system, herbicide application, and more (Heijting et al., 2007a). 
However, few studies have examined the impact of such factors on weed 
distribution. 

1.2. Temporal pattern of weeds 

To better understand the temporal dynamics of weed distribution, it 
is also necessary to collect data for a certain field over the course of 
several years. The spatial stability of weed patches has been shown by 
several studies (Blanco-Moreno et al., 2004; Blank et al., 2019; Heijting 
et al., 2007b; Wilson and Brain, 1991). However, some studies have 
shown temporal inconsistency in weed distribution. According to 
Johnson et al. (1996), the edges of patches change considerably from 
season to season. In their four years study, Gerhards et al. (1997) 
concluded that the spatial pattern of Setaria pumila and Setaria viridis was 
unstable. Therefore, generalizing weed patch temporal stability is 
problematic. 

1.3. Crop system 

Crop types and their management affect the weed species composi-
tion that emerged in the field (Fried et al., 2008), which might affect 
weed spatial distribution observed in the field. Different crops have 
different canopy structures (Colbach et al., 2019), which can create 
different microclimates within the field. For example, a dense, tall 
canopy crop, such as maize, may create a less favorable microclimate for 
weed growth, resulting in fewer weeds growing under the canopy 
compared to a crop with a more open canopy, like soybeans (Van 
Heemst, 1985). A more competitive crop can suppress weed growth 
more effectively, leading to a lower density of weeds in the field (Aharon 
et al., 2021). In contrast, onion is considered a weak competitor with 
weeds due to its slow growth rate, shallow root depth, and foliage 
structure (Khokhar et al., 2006). Mechanized practices may also play an 
important part in weed seed distribution. For example, the increase in 
weed seed dispersal in crop systems is often attributed to the use of 
combine harvesters resulting in weed patches elongated in the direction 
of the rows (Colbach et al., 2000). In that sense, cropping systems might 
be relevant when studying the spatial distribution of weeds. 

1.4. Mapping methods 

One method that can be used to implement SSWM is to create an 

accurate map of weed-infested areas in the field (Ribeiro et al., 2005). 
Weed maps can be generated by scouting the field. Another method of 
mapping weeds can utilize data from relatively recent technological 
advances in remote and proximal sensing. Indeed, in the last decade, 
airborne e.g., satellite, airplane, and UAV, and proximal sensing have 
become a major platform for mapping weeds and studying the spatial 
aspects of weed distribution. 

This work reviewed the literature focusing on the spatial distribution 
of weeds within agricultural fields over the last three decades. We used 
an extensive survey to characterize various weed distribution research 
aspects to identify research gaps. Specifically, we looked for possible 
changes in four aspects of weed distribution over the last 30 years, and 
asked four principal questions: (1) How common has aggregated spatial 
distribution been among studied species? (2) How central was the 
temporal aspect in studying weed distribution? (3) Does the literature on 
weed distribution within fields represent all crop types? (4) Have weed 
mapping methods changed during the last three decades? 

2. Methods 

2.1. Literature survey 

We systematically searched relevant literature using the ISI Web of 
Science (WoS). The following search criteria were used in December 
2019: TOPIC: (weed*) AND TOPIC: (spatial OR temporal OR distribu-
tion OR pattern AND analy*) AND TOPIC: (patch* OR aggregat* OR 
Random OR Uniform* OR Homogeneous OR Heterogeneous). No 
geographical restrictions were applied during the screening process, and 
the search period in ISI WoS was 1984–2019. We found a total of 463 
articles in this search. An additional three records came from the au-
thors’ collections of relevant literature. To ensure the inclusion of only 
relevant and original research, we only included English-language pa-
pers that were not review papers in our analysis. The shortlist of papers 
analyzed in this review did not include papers that produced weed maps 
without examining their spatial and temporal distribution. In addition, 
to avoid duplication of reports, articles referencing data collected in 
earlier studies were discarded. The articles were screened using several 
criteria: (a) peer-reviewed articles (as opposed to book chapters or 
conference abstracts), (b) articles that quantified or estimated weed 
distribution in the plots studied, and (c) studies that took place in an 
agricultural setting (e.g., and not in pastures or natural areas). This 
produced 81 full-text articles, which were further screened. The com-
plete list of publications utilized is listed in Appendix S1. Fig. 1 shows 
the geographical locations of the studies included in our dataset. 

2.2. Article characterization 

Information about the research in the 81 articles was extracted, 
including (i) Crop type; (ii) Crop system, i.e., Crop/Orchard/Vineyards; 
(iii) Weed species’ name (iv) Spatial pattern of each studied species, i.e., 
aggregate/random/varies (which was not conclusive in the study and 
varied between fields, seasons or the geostatistical method used); (v) 
Number of fields included in each study, and (vi) Length of the study in 
years; (vii) Weed mapping method, i.e., Scouting/Satellite/Airplane/ 
UAV/Proximal (tractor/tower/camera etc.) 

A χ2 test was used to determine levels of significance between crop 
systems and species (P < 0.05). 

3. Results and discussion 

In order to generalize across species and systems, to better under-
stand weed patch spatiotemporal dynamics, and to make appropriate 
management decisions, we need to better understand the fundamental 
link between spatial distribution and temporal dynamics and the factors 
shaping these patterns. Increasing the knowledge of these dynamics and 
factors will aid in optimizing herbicide application spatially (where to 
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spray), temporarily (when to spray), and the amount of herbicides 
needed, thus reducing adverse effects on the environment and farmer’s 
costs. 

3.1. Selection of articles 

The papers selected studied the distribution of 141 species. Studies 
on the spatial distribution of weeds focusing on annuals comprised 74% 
of the species studied. The most studied species were Chenopodium album 
(appearing in 19 studies), Abutilon theophrasti, and Galium aparine (10 
studies each). The distribution of weed communities was also examined 
in 12 studies. While we cannot infer the climate conditions and eco-
systems from such a survey, we conservatively estimate that most of the 
research on weed distribution was done in temperate and Mediterranean 
regions (Fig. 1). Few studies have been performed in dry or tropical 
ecosystems. Thus, a better representation of these and other ecosystems 
is needed. This will help determine if the spatiotemporal dynamics of 
weeds found in this review are a general phenomenon. 

3.2. Spatial patterns of weeds 

Many studies have shown that different weed species tend to 
spatially cluster (Table S1). These studies found that herbicides are 
typically applied uniformly throughout the field, resulting in excess 
herbicide use. For example, when Rozenberg et al. (2021) used a UAV 
(Unmanned Aerial Vehicle) to map weeds in onion fields, they found 
that weeds covered less than 7% of the field in five out of 11 fields. 
Nevertheless, herbicides were applied over the entire area of all 11 
fields. Considering weed distribution could significantly reduce herbi-
cide use. Another study that supports the need to account for the spatial 
pattern of weeds is Castaldi et al. (2017), which compared uniform 
herbicide application to patch spraying according to an application map. 
They concluded that the latter could save up to 40% of the herbicides 
used in a uniform application. This herbicide reduction would save 16 to 
45 € per ha without adversely affecting crop yield. Hamouz et al. (2013) 
reported that SSWM in winter wheat can reduce herbicide usage by 
15–100% without compromising yields. 

In support of advancing to more precise weed management, we 
found in our literature survey that 86% of the species had patchy dis-
tribution. Furthermore, the spatial distribution of six species groups: 
Amaranthus spp. (four studies), Setaria spp. (four studies), Avena spp., 
Cruciferous spp., Solanum spp., and Veronica spp. (one study for each 
species), was evaluated and found to be aggregated, except for one study 
that found Setaria spp. to be randomly distributed (Table S1). Ten papers 
evaluated the spatial distribution of the entire weed communities pre-
sent in the fields studied, and found them to be aggregated. With regards 
to single weed species, aggregation was the predominant spatial pattern 
for Abutilon theophrasti (p = 0.02 by χ2 test), Chenopodium album (p =
0.0003), and Galium aparine (p = 0.002). 

Dispersal processes are primarily responsible for the spatial pattern 
of seeds in the soil (Wiles and Brodahl, 2004). Most weed seeds cluster 
around the mother plant. With Ecballium elaterium, which distributes 
only by seeds, the patchy distribution may be the result of a unique seed 
dispersion mechanism that does not rely on wind or water support, so 
most of the seeds are established near the mother plant, resulting in an 
aggregated pattern of plants (Blank et al., 2019). However, the number 
of seeds that land on a particular area depends on various factors, 
including the height and density of the seed source, the size and shape of 
the seeds, wind speed and direction, and the spatial heterogeneity of 
parent plants (Bertiller, 1998; Harper, 1977; Howe and Smallwood, 
1982). Shaukat and Siddiqui (2004) compared seed banks and 
above-ground vegetation samples, and found that seed banks and 
above-ground vegetation were qualitatively similar. Granivory may also 
affect the distribution of seeds in the soil (Price and Reichman, 1987). 
Similarly, plants that propagate via tubers that grow from underground 
rhizomes in the vicinity of the mother plant result in a patchy distri-
bution e.g., Sorghum halepense (Andújar et al., 2012; San Martín et al., 
2015). The patchy pattern observed also results from heterogeneous 
environmental conditions e.g., soil spatial heterogeneity, microclimate 
conditions, shade, etc. (Metcalfe et al., 2018; Walter et al., 2002), 
competition between species, or a combination of these factors (Cardina 
et al., 1997; Thill and Mallory-Smith, 1997). 

A patchy distribution can also result from weed seeds or propagules 
dispersed by wind or other vectors. For example, a random distribution 
pattern can be expected for wind-borne seeds, such as dandelion (Goudy 
et al., 2001; Heijting et al., 2007a) and Sonchus asper (Heijting et al., 
2007a). However, Goudy et al. (2001) suggested that the timing of seed 
production might affect weed distribution. For example, some species, 
such as Taraxacum officinale, spread their seed relatively early in the 
season, thus avoiding the crop canopy closure, allowing free movement 
of seeds throughout the field. Late-maturing species, like Sonchus asper, 
might be restricted by the crop canopy, resulting in seed shedding in 
proximity to the parent plant (Goudy et al., 2001). This highlights the 
importance of studying weed distribution within a season. 

We found that weed distribution is frequently examined in a 
restricted number of fields. About 46% of the articles studied only one 
field, and only 22% of the studies encompassed more than five fields 
(Fig. 2). The small sample size poses challenges in making meaningful 
generalizations and limits the ability to account for significant local 
variations, such as diverse management practices used by farmers in 
different ways (Freckleton et al., 2018), and regional variability, such as 
differences in climate and topography between agricultural fields (Gafni 
et al., 2023). More work is needed to better understand which species 
tend to aggregate and form stable patches in response to management 
practices (e.g., crop rotation or weed control intensity) or field charac-
teristics (edaphic conditions, geographic location, shape, etc.). In fact, 
eight species had contrasting distributions in different studies e.g., 
Avena fatua was found to be random by Dessaint et al. (1991) but 

Fig. 1. Map showing the distribution of reviewed papers by country.  
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aggregated by Gerhards and Oebel (2006). Similarly, Goudy et al. 
(2001) and Heijting et al. (2007a) found the distribution of Taraxacum 
officinale Weber to be random, Mulugeta and Stoltenberg (1997a, 1997b) 
found it to be aggregated. Wyse-Pester et al. (2002) proposed that the 
lack of spatial dependence for some of the species in their survey might 
result from inadequate sampling unit size and placement or human error 
in measuring. This means that seed dispersal and germination could 
occur below the observed separation distances between sample units. 
Accordingly, Weisz et al. (1995) determined that sampling unit size 
could contribute to finding pure nugget effects, indicating the absence of 
spatial dependence. Sample size (Hamouz et al., 2006) and quadrat size 
(Dille et al., 2002) were found to be critical for accurately mapping 
weeds. 

Another explanation might involve seed density. According to Des-
saint et al. (1991), the spatial pattern of seeds was primarily determined 
by seed density, with abundant species having aggregated patterns. In 
line with this, Shaukat et al. (2004) found that of the 27 species recorded 
in the seed bank, 21 showed an aggregated pattern. They concluded that 
species with low seed density exhibited Poisson distribution, while 
species with moderate to high seed density exhibited aggregated 
patterns. 

Lastly, differences in local management actions, such as cropping 
history, tillage system, and herbicide application, might also explain the 
spatial distribution of weeds. The aggregated pattern tends to be more 
common in no-till fields than in plowed fields. Cardina et al. (1996) 
suggested that when seeds are mixed during tillage, they are likely to be 
less aggregated, more random, and therefore less spatially dependent. 
Furthermore, seeds are buried and diluted in the soil during tillage, 
making patchiness less noticeable. Barroso et al. (2012) found that 
combined harvesting disperses S. halepens seeds and may lead to a less 
aggregated distribution of this species. Heijting et al. (2007a) studied 
the dispersal of weed seeds in fields during harvest, using a range of 
plant species as model weeds. The authors concluded that the rigid-tine 
cultivator is likely contributing to dispersal in the direction the culti-
vator is driven by dragging plant material with seeds through the field. A 
study conducted by Cohen et al. (2017) found that Phelipanche aegyp-
tiaca seeds are blown from an infested field to a distance of 90 m, leading 
to infestations in neighboring fields and possibly accounting for the high 
infestation near the borders of the fields. Furthermore, organic farming 
can also lead to different aggregation patterns than conventional 
no-tillage systems (Pollnac et al., 2008). The latter showed high weed 
density patches mixed with weed-free gaps, while organic systems 
showed patchiness at multiple scales with few gaps, suggesting that the 
various processes, which produce aggregation, are different. 

3.3. Temporal pattern of weeds 

Contrary to the relatively well-studied spatial aspects of weeds in 
agricultural fields, the temporal aspects, which require data collection in 
subsequent years or multiple times during a growing season, have 
received less attention. In our literature survey, we found that 63% of 
studies cover a period of one to two years, which is insufficient for 
studying the temporal dynamics of weed distribution (Fig. 3). Only 6% 
of the studies exceeded five years. In several studies on weed patches, 
the spatial aspects of the patches appear to be relatively stable over time 
(Blanco-Moreno et al., 2004; Blank et al., 2019; Heijting et al., 2007b; 
Wilson and Brain, 1991). Heiting et al. (2007b) attributed instability to 
the species’ dispersion mechanism, which is greater for wind-dispersed 
seeds and for species with sparser populations. Other field studies 
showed that pre-harvest dispersal was important for patch stability of 
annual weed species since it results in compact and dense seed patches 
(Gerhards et al., 1997; Wilson and Brain, 1991). 

Understanding the temporal dynamics of weed distribution can help 
improve weed management making it more effective and precise (Ger-
hards et al., 2022; Lati et al., 2022). For example, pre-emergence her-
bicides can be applied early in the growing season, based on the 
dynamics of patches, even before visual signs of infestation are apparent 
(Lati et al., 2022). In this regard, the spatial distribution of weeds from 
one year could serve as a basis for making management decisions the 
following year (Koller and Lanini, 2005; Lati et al., 2022), given a 
reasonable degree of patch stability. The stability of weed patches pro-
vides another advantage to pre-emergence treatments: farmers can es-
timate the quantity of herbicides needed in advance, thus optimizing the 
purchase and reducing costs. In addition, the timing of herbicide ap-
plications can be improved by better understanding weed populations’ 
temporal dynamics. For example, if post-emergence management is 
applied too early, i.e., before most weeds have emerged, it may result in 
low returns and lead to ecological consequences such as herbicide 
off-target effects, as well as agro-management costs such as soil 
compaction. 

Relatively short-term studies appear to be common in many 
ecological and agricultural studies because collecting data in such sys-
tems is a resource-intensive and time-consuming process. According to 
meta-analyses on crop pollination (Lowe et al., 2021), plant storage 
dynamics (Martínez-Vilalta et al., 2016), and bird distribution (Bayard 
and Elphick, 2010), the average study duration was 2.3, 1.2, and 2.5 
years, respectively. Thus, generalizing from previous findings on patch 
stability is limited when previous studies looked at very few fields over a 
relatively short time span. 

Fig. 2. The distribution of publications based on the number of plots.  

Fig. 3. The distribution of publications according to the duration of the studies, 
measured in years. 
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3.4. Crop system 

In our literature survey, most of the research that studied weed 
distribution was in crop fields (97% of the studies) and not in orchards 
(1.5%) or vineyards (1.5%). The crops most studied were corn (27%) 
and wheat (23%) (Fig. 4). Weed aggregation was the predominant 
spatial pattern in the four common crops (maize, wheat, soybean and 
barley) (p < 0.0001; χ2 test). Various crops have different competitive 
characteristics, including rapid germination and root development, 
early vegetative growth and vigor, rapid canopy closure, high leaf area 
expansion rate, greater height, and profuse tillering or branching 
(Lemerle et al., 1996). For instance, wheat exhibits rapid germination 
and root development, along with rapid leaf area expansion and a high 
tillering capacity, enabling it to compete effectively against weeds. On 
the other hand, crops like chickpea (Nasrolahzadeh et al., 2012), onion 
(Khokhar et al., 2006), and tef (Tefera, 2002) are considered poor 
competitors with weeds. Such differences between crops can affect weed 
species composition. For example, Hakansson (1983) found that high 
crop density selects for weeds that can climb, such as Polygonum 
convolvulus and Galium aparine, while rosette weeds population, such as 
Brassica napus and S. asper, declined. Additionally, crops differ in their 
cultural practices, such as herbicides and tillage, fertilization, time of 
tillage and harvest date in relation to weed and crop emergence (Ball 
and Miller, 1990; Slife, 1976). Over the course of the growing season, 
these agronomic practices can affect the composition of weed species. 
Thus, when farmers rotate their crops, they change the conditions in 
their fields and therefore change the observed dynamics of weed 
patches. 

Weed species characterized by an unstable patchy distribution will 
naturally require higher mapping frequency compared with spatial 
stable weed species. This understanding is particularly pertinent to or-
chards because the use of remote sensing e.g., satellites, airplanes, or 
UAVs in orchards is limited. Remote sensing can only be used to map 
weeds between rows and cannot accurately detect weeds under the 
canopy. Due to this constraint, the issue of temporal consistency in patch 
locations in orchards might be even more important than in crop 
systems. 

3.5. Mapping methods 

According to our findings, scouting was the most frequently used 
method for mapping weeds, with approximately 78% of the studies 
employing this technique (Fig. 5). However, scouting is known to be a 
time-consuming and costly task (Schuster et al., 2007), which often 
necessitates additional interpolation for estimating weed infestation in 
unsampled areas (Rew and Cousens, 2001). Furthermore, scouting for 
weeds on a commercial scale is often unfeasible, especially when aiming 
to properly represent the intra-field infestation state (Freckleton et al., 

2018; Rew and Cousens, 2001). Numerous studies used UAVs to map 
weeds (Mohidem et al., 2021, Rozenberg et al., 2021); however, we 
found that only 5% of the studies used UAVs to study the spatial dis-
tribution or temporal dynamics of weeds. UAV platforms used in weed 
mapping have several advantages, primarily the ability to fly at low 
altitudes, enabling greater spatial resolution imagery, and the possibility 
of identifying small individual plants or small weed patches, and map-
ping specific weed species (Rozenberg et al., 2023; Xiang and Tian, 
2011). Nonetheless, despite their high spatial resolution, species iden-
tification and simple automated classification procedures remain a 
challenge (Mohidem et al., 2021). Furthermore, UAVs suffer from some 
limitations, such as the inability to fly on windy and rainy days, which 
might produce blurry images. Other factors can also limit the use of 
UAVs, including safety concerns that require coordination with air 
traffic control agencies, security considerations such as avoiding air-
ports and international borders, and regulatory requirements such as the 
need for insurance to address civil liability issues associated with flights 
(Carr, 2013). 

Recent advances in robotic and computer vision (proximal sensing) 
have led to the development of robotic weeders that can detect weeds 
and remove them mechanically or precision spray in real-time without 
requiring preview maps (Machleb et al., 2020; Merfield, 2023). Never-
theless, proximal sensing was used in only a small number of studies we 
reviewed (Fig. 5). Satellite images have been widely used for land cover 
classification (Phiri and Morgenroth, 2017), determining crop health 
(Mutanga et al., 2017), yield prediction (Lobell et al., 2015), and to a 
lesser extent, for mapping invasive plants (Royimani et al., 2019). 

Additional developments in satellite technology enable us to observe 
the earth at unprecedented spatial (30–50 cm), spectral, temporal 
(daily/weekly revisit time), and resolution using satellite sensors such as 
Pléiades-1A (50 cm), Pléiades Neo (30 cm), SkySat (57 cm), and 
WorldView-4 (31 cm) (Zhang et al., 2020). However, almost all previous 
studies on invasive weeds have been carried out in natural areas (Everitt 
et al., 2005; Li et al., 2020). Using satellite imagery to map weeds is 
subject to some limitations. Perhaps the relative coarse resolution of 
satellite images makes them less suitable for mapping weeds (Rasmussen 
et al., 2021). In addition, the primary disadvantage of satellite imagery 
is its dependency on a clear, cloud-free view of the sky. Another disad-
vantage of satellite imagery is the need for significant levels of data 
processing. 

Nonetheless, remote sensing via satellites may facilitate our under-
standing of weeds’ spatial patterns. De Castro et al. (2013) utilized 
satellite imagery to map cruciferous spp. patches in winter wheat in over 
260 fields. Such an extremely high number of fields examined, especially 
when compared to most studies, combined with the ability to use im-
agery archives, and frequency of satellite image acquisition, may be used 
to study spatiotemporal dynamics of weeds. In our literature survey, 
about 3% of the studies used satellite images to map weeds. However, in 

Fig. 4. The distribution of published articles based on the studied crops.  

Fig. 5. The shift over time in the use of scouting (shown in gray), remote 
sensing (including UAVs, satellites, and airplanes) and proximal sensing (rep-
resented in black) as methods for weed mapping. 

L. Blank et al.                                                                                                                                                                                                                                   



Crop Protection 172 (2023) 106300

6

recent years, weed mapping has shifted from scouting to remote sensing 
(Fig. 5). 

4. Conclusions 

Studying the spatiotemporal distribution of weeds addresses a 
pressing environmental and agricultural concern: the need to reduce 
herbicides used for weed management. Herbicides are an essential tool 
for weed control; nevertheless, their use can cause adverse effects on the 
environment. Given the widespread phenomena of herbicide resistance, 
the ongoing climate change, and the increasing trend in global trade 
facilitating long-distance weed dispersal, weed problems will likely 
worsen in the future (Ramesh et al., 2017; Shabani et al., 2020). This 
review highlights the importance of conducting long-term studies in 
diverse ecosystems and conditions to gain a better understanding of the 
temporal dynamics of weed patches during and between growing sea-
sons, as well as the factors that might affect them. In addition, long-term 
studies would allow the assessment of the effectiveness of the SSWM 
approach as well as other weed management strategies, such as cover 
crops and mixed-cropping systems, in controlling weeds. Further 
research is needed in orchards, where remote sensing technologies are 
restricted as the canopy obscures the ground, making temporal consis-
tency in weed patch locations important. By finding such temporal dy-
namics, it may be possible to reduce the frequency of mapping required, 
compared to orchards where weed distribution is unstable. Lastly, the 
observed increase in the use of remote sensing for weed mapping in 
recent years is promising and may enable the development of scalable 
weed mapping approaches. 
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Hamouz, P., Hamouzová, K., Holec, J., Tyšer, L., 2013. Impact of site-specific weed 
management on herbicide savings and winter wheat yield. Plant Soil Environ. 59, 
101–107. 

Hamouz, P., Novakova, K., Soukup, J., Tyser, L., 2006. Evaluation of sampling and 
interpolation methods used for weed mapping. J. Plant Dis. Prot. 20, 205–215. 

Harper, J.L., 1977. Population Biology of Plants. Blackburn Press, Oxford, UK.  
Heap, I., 2021. The International Herbicide-Resistant Weed Database. 
Heijting, S., Van der Werf, W., Kruijer, W., Stein, A., 2007a. Testing the spatial 

significance of weed patterns in arable land using Mead’s test. Weed Res. 47, 
396–405. 

Heijting, S., Van Der Werf, W., Stein, A., Kropff, M.J., 2007b. Are weed patches stable in 
location? Application of an explicitly two-dimensional methodology. Weed Res. 47, 
381–395. 

Herrmann, I., Berger, K., 2021. Remote and proximal assessment of plant traits. Rem. 
Sens. 13, 1893. 

Hicks, H.L., Comont, D., Coutts, S.R., Crook, L., Hull, R., Norris, K., Neve, P., Childs, D.Z., 
Freckleton, R.P., 2018. The factors driving evolved herbicide resistance at a national 
scale. Nat. Ecol. Evol. 2, 529–536. 

Howe, H.F., Smallwood, J., 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Evol. 13, 
201–228. 

Jensen, H.G., Jacobsen, L.-B., Pedersen, S.M., Tavella, E., 2012. Socioeconomic impact of 
widespread adoption of precision farming and controlled traffic systems in Denmark. 
Precis. Agric. 13, 661–677. 

Jepson, P.C., Guzy, M., Blaustein, K., Sow, M., Sarr, M., Mineau, P., Kegley, S., 2014. 
Measuring pesticide ecological and health risks in West African agriculture to 
establish an enabling environment for sustainable intensification. Philos. Trans. R. 
Soc. 369, 20130491. 

Johnson, G.A., Mortensen, D.A., Gotway, C.A., 1996. Spatial and temporal analysis of 
weed seedling populations using geostatistics. Weed Sci. 704–710. 

Karp, D.S., Chaplin-Kramer, R., Meehan, T.D., Martin, E.A., DeClerck, F., Grab, H., 
Gratton, C., Hunt, L., Larsen, A.E., Martínez-Salinas, A., 2018. Crop pests and 
predators exhibit inconsistent responses to surrounding landscape composition. 
Proc. Natl. Acad. Sci. U. S. A 115, E7863–E7870. 

Khokhar, K.M., Mahmood, T., Shakeel, M., Chaudhry, M.F., 2006. Evaluation of 
integrated weed management practices for onion in Pakistan. Crop Protect. 25, 
968–972. 

Koller, M., Lanini, W.T., 2005. Site-specific Herbicide Applications Based on Weed Maps 
Provide Effective Control, vol. 59. California Agric. 

Krasnov, H., Cohen, Y., Goldshtein, E., Mendelsohn, O., Silberstein, M., Gazit, Y., 
Blank, L., 2019. The effect of local and landscape variables on Mediterranean fruit 
fly dynamics in citrus orchards utilizing the ecoinformatics approach. J. Pest. Sci. 92, 
453–463. https://doi.org/10.1007/s10340-018-1023-8. 

Krasnov, H., Cohen, Y., Goldshtein, E., Ovadia, S., Sharon, R., Harari, A.R., Blank, L., 
2021. Inconsistent effects of local and landscape factors on two key pests in Israeli 
vineyards. J. Appl. Entomol. 145, 900–910. 

Kudsk, P., Streibig, J.C., 2003. Herbicides–a two-edged sword. Weed Res. 43, 90–102. 
Lamb, D.W., Frazier, P., Adams, P., 2008. Improving pathways to adoption: putting the 

right P’s in precision agriculture. Comput. Electron. Agric. 61, 4–9. 
Lati, R.N., Gerhards, R., Eizenberg, H., Matzrafi, M., Blank, L., Christensen, S., 2022. 

Advances in precision application technologies for weed management. In: Kudsk, P. 
(Ed.), Advances in Integrated Weed Managemen. Burleigh Dodds Publishing, 
Cambridge.  

Lati, R.N., Rasmussen, J., Andujar, D., Dorado, J., Berge, T.W., Wellhausen, C., 
Pflanz, M., Nordmeyer, H., Schirrmann, M., Eizenberg, H., 2021. Site-specific weed 
management—constraints and opportunities for the weed research community: 
insights from a workshop. Weed Res. 61, 147–153. 

Lemerle, D., Verbeek, B., Cousens, R.D., Coombes, N.E., 1996. The potential for selecting 
wheat varieties strongly competitive against weeds. Weed Res. 36, 505–513. 

Li, N., Li, L., Zhang, Y., Wu, M., 2020. Monitoring of the invasion of spartina alterniflora 
from 1985 to 2015 in zhejiang province, China. BMC Ecol. 20, 1–12. 

Lobell, D.B., Thau, D., Seifert, C., Engle, E., Little, B., 2015. A scalable satellite-based 
crop yield mapper. Remote Sens. Environ. 164, 324–333. 

Lowe, E.B., Groves, R., Gratton, C., 2021. Impacts of field-edge flower plantings on 
pollinator conservation and ecosystem service delivery–A meta-analysis. Agric. 
Ecosyst. Environ. 310, 107290. 

Machleb, J., Peteinatos, G.G., Kollenda, B.L., Andújar, D., Gerhards, R., 2020. Sensor- 
based mechanical weed control: present state and prospects. Comput. Electron. 
Agric. 176, 105638. 

Martínez-Vilalta, J., Sala, A., Asensio, D., Galiano, L., Hoch, G., Palacio, S., Piper, F.I., 
Lloret, F., 2016. Dynamics of non-structural carbohydrates in terrestrial plants: a 
global synthesis. Ecol. Monogr. 86, 495–516. 

Merfield, C.N., 2023. Could the dawn of Level 4 robotic weeders facilitate a revolution in 
ecological weed management? Weed Res. 63, 83–87. 

Metcalfe, H., Milne, A.E., Webster, R., Lark, R.M., Murdoch, A.J., Kanelo, L., Storkey, J., 
2018. Defining the habitat niche of Alopecurus myosuroides at the field scale. Weed 
Res. 58, 165–176. 

Mohidem, N.A., Che’Ya, N.N., Juraimi, A.S., Fazlil Ilahi, W.F., Mohd Roslim, M.H., 
Sulaiman, N., Saberioon, M., Mohd Noor, N., 2021. How can unmanned aerial 
vehicles Be used for detecting weeds in agricultural fields? Agriculture 11, 1004. 

Mulugeta, D., Stoltenberg, D.E., 1997a. Increased weed emergence and seed bank 
depletion by soil disturbance in a no-tillage system. Weed Sci. 45, 234–241. 

Mulugeta, D., Stoltenberg, D.E., 1997b. Seed bank characterization and emergence of a 
weed community in a moldboard plow system. Weed Sci. 45, 54–60. 

Mutanga, O., Dube, T., Galal, O., 2017. Remote sensing of crop health for food security in 
Africa: potentials and constraints. Remote Sens. Appl.: Society and Environment 8, 
231–239. 

Nasrolahzadeh, S., Salmasi, S.Z., Pourdad, S.S., 2012. Evaluation of wheat-chickpea 
intercrops as influenced by nitrogen and weed management. Am. J. Agric. Biol. Sci. 
7, 447–460. 

Oerke, E.-C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31–43. 
Phiri, D., Morgenroth, J., 2017. Developments in Landsat land cover classification 

methods: a review. Rem. Sens. 9, 967. 
Pollnac, F.W., Rew, L.J., Maxwell, B.D., Menalled, F.D., 2008. Spatial patterns, species 

richness and cover in weed communities of organic and conventional no-tillage 
spring wheat systems. Weed Res. 48, 398–407. 

Pretty, J.N., Brett, C., Gee, D., Hine, R.E., Mason, C.F., Morison, J.I.L., Raven, H., 
Rayment, M.D., van der Bijl, G., 2000. An assessment of the total external costs of UK 
agriculture. Agric. Syst. 65, 113–136. 

Price, M.V., Reichman, O.J., 1987. Distribution of seeds in Sonoran Desert soils: 
implications for heteromyid rodent foraging. Ecology 68, 1797–1811. 

Ramesh, K., Matloob, A., Aslam, F., Florentine, S.K., Chauhan, B.S., 2017. Weeds in a 
changing climate: vulnerabilities, consequences, and implications for future weed 
management. Front. Plant Sci. 8, 95. 

Rasmussen, J., Azim, S., Boldsen, S.K., Nitschke, T., Jensen, S.M., Nielsen, J., 
Christensen, S., 2021. The challenge of reproducing remote sensing data from 
satellites and unmanned aerial vehicles (UAVs) in the context of management zones 
and precision agriculture. Precis. Agric. 22, 834–851. 

Rew, L.J., Cousens, R.D., 2001. Spatial distribution of weeds in arable crops: are current 
sampling and analytical methods appropriate? Weed Res. 41, 1–18. 

Ribeiro, A., Fernández-Quintanilla, C., Barroso, J., García-Alegre, M.C., 2005. 
Development of an image analysis system for estimation of weed. Precis. Agric. 5, 
69. 

Royimani, L., Mutanga, O., Odindi, J., Dube, T., Matongera, T.N., 2019. Advancements in 
satellite remote sensing for mapping and monitoring of alien invasive plant species 
(AIPs). Phys. Chem. Earth, Parts A/B/C 112, 237–245. 

Rozenberg, G., Dias, J.L., Anderson, W.M., Sellers, B.A., Piccolo, M.B., Boughton, R.K., 
Blank, L., 2023. Using a low-cost unmanned aerial vehicle for mapping giant 
smutgrass in bahiagrass pastures. Precis. Agric. 24, 971–985. 

Rozenberg, G., Kent, R., Blank, L., 2021. Consumer-grade UAV utilized for detecting and 
analyzing late-season weed spatial distribution patterns in commercial onion fields. 
Precis. Agric. 22, 1317–1332. 

San Martín, C., Andújar, D., Fernández-Quintanilla, C., Dorado, J., 2015. Spatial 
distribution patterns of weed communities in corn fields of central Spain. Weed Sci. 
63, 936–945. 

Schuster, I., Nordmeyer, H., Rath, T., 2007. Comparison of vision-based and manual 
weed mapping in sugar beet. Biosyst. Eng. 98, 17–25. 

Sciarretta, A., Trematerra, P., 2014. Geostatistical tools for the study of insect spatial 
distribution: practical implications in the integrated management of orchard and 
vineyard pests. Plant Protect. Sci. 50, 97–110. 

Shabani, Farzin, Ahmadi, M., Kumar, L., Solhjouy-fard, S., Tehrany, M.S., 
Shabani, Fariborz, Kalantar, B., Esmaeili, A., 2020. Invasive weed species’ threats to 
global biodiversity: future scenarios of changes in the number of invasive species in a 
changing climate. Ecol. Indicat. 116, 106436. 

Shaukat, S.S., Siddiqui, I.A., 2004. Spatial pattern analysis of seeds of an arable soil seed 
bank and its relationship with above-ground vegetation in an arid region. J. Arid 
Environ. 57, 311–327. 

Slife, F.W., 1976. Pest ecosystem models, other important ecosystems—weed 
populations. In: Modeling for Pest Management: Concepts, Techniques, and 
Applications. USA/USSR. Michigan State Univ., East Lansing, MI, USA, pp. 193–195. 

Smith, V., Bohan, D.A., Clark, S.J., Haughton, A.J., Bell, J.R., Heard, M.S., 2008. Weed 
and invertebrate community compositions in arable farmland. Arthropod-Plant 
Interactions 2, 21–30. 

Swanton, C.J., Nkoa, R., Blackshaw, R.E., 2015. Experimental methods for crop–weed 
competition studies. Weed Sci. 63, 2–11. 

Tefera, T., 2002. Allelopathic effects of Parthenium hysterophorus extracts on seed 
germination and seedling growth of Eragrostis tef. J. Agron. Crop Sci. 188, 306–310. 

Thill, D.C., Mallory-Smith, C.A., 1997. The nature and consequence of weed spread in 
cropping systems. Weed Sci. 337–342. 

Tsror, L., Lebiush, S., Hazanovsky, M., Erlich, O., Blank, L., 2020. Aerial dispersal of 
Spongospora subterranea sp. f. subterranea, the causal agent of potato powdery scab. 
Eur. J. Plant 158, 391–401. 

Van Heemst, H.D.J., 1985. The influence of weed competition on crop yield. Agric. Syst. 
18, 81–93. 

Walter, A.M., Christensen, S., Simmelsgaard, S.E., 2002. Spatial correlation between 
weed species densities and soil properties. Weed Res. 42, 26–38. 

Weisz, R., Fleischer, S., Smilowitz, Z., 1995. Site-specific integrated pest management for 
high value crops: sample units for map generation using the Colorado potato beetle 
(Coleoptera: chrysomelidae) as a model system. J. Econ. Entomol. 88, 1069–1080. 

Wiles, L., Brodahl, M., 2004. Exploratory data analysis to identify factors influencing 
spatial distributions of weed seed banks. Weed Sci. 52, 936–947. 

Wilson, B.J., Brain, P., 1991. Long-term stability of distribution of Alopecurus myosuroides 
Huds. within cereal fields. Weed Res. 31, 367–373. 

L. Blank et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0261-2194(23)00123-0/sref36
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref36
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref37
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref37
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref38
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref38
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref39
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref39
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref39
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref40
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref40
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref40
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref41
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref41
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref42
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref43
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref44
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref44
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref44
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref45
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref45
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref45
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref46
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref46
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref47
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref47
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref47
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref48
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref48
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref49
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref49
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref49
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref50
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref50
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref50
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref50
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref51
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref51
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref52
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref52
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref52
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref52
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref53
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref53
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref53
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref54
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref54
https://doi.org/10.1007/s10340-018-1023-8
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref56
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref56
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref56
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref57
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref58
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref58
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref59
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref59
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref59
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref59
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref60
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref60
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref60
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref60
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref61
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref61
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref62
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref62
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref63
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref63
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref64
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref64
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref64
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref65
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref65
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref65
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref66
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref66
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref66
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref67
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref67
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref68
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref68
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref68
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref69
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref69
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref69
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref70
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref70
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref71
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref71
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref72
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref72
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref72
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref73
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref73
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref73
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref74
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref75
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref75
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref76
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref76
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref76
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref77
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref77
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref77
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref78
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref78
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref79
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref79
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref79
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref80
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref80
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref80
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref80
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref81
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref81
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref82
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref82
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref82
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref83
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref83
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref83
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref84
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref84
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref84
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref85
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref85
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref85
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref86
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref86
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref86
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref87
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref87
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref88
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref88
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref88
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref89
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref89
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref89
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref89
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref90
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref90
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref90
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref91
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref91
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref91
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref92
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref92
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref92
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref93
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref93
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref94
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref94
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref95
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref95
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref96
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref96
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref96
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref97
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref97
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref98
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref98
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref99
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref99
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref99
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref100
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref100
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref101
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref101


Crop Protection 172 (2023) 106300

8

Wilson, C., Tisdell, C., 2001. Why farmers continue to use pesticides despite 
environmental, health and sustainability costs. Ecol. Econ. 39, 449–462. 

Wyse-Pester, D.Y., Wiles, L.J., Westra, P., 2002. Infestation and spatial dependence of 
weed seedling and mature weed populations in corn. Weed Sci. 50, 54–63. 

Xiang, H., Tian, L., 2011. Development of a low-cost agricultural remote sensing system 
based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 108, 
174–190. 

Zhang, C., Marzougui, A., Sankaran, S., 2020. High-resolution satellite imagery 
applications in crop phenotyping: an overview. Comput. Electron. Agric. 175, 
105584. 

L. Blank et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0261-2194(23)00123-0/sref102
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref102
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref103
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref103
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref104
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref104
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref104
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref105
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref105
http://refhub.elsevier.com/S0261-2194(23)00123-0/sref105

	Spatial and temporal aspects of weeds distribution within agricultural fields – A review
	1 Introduction
	1.1 Spatial patterns of weeds
	1.2 Temporal pattern of weeds
	1.3 Crop system
	1.4 Mapping methods

	2 Methods
	2.1 Literature survey
	2.2 Article characterization

	3 Results and discussion
	3.1 Selection of articles
	3.2 Spatial patterns of weeds
	3.3 Temporal pattern of weeds
	3.4 Crop system
	3.5 Mapping methods

	4 Conclusions
	Funding
	Data statement
	Declaration of competing interest
	Data availability
	Appendix A Supplementary data
	References


